SML: Semantic meta-learning for few-shot semantic segmentation?

نویسندگان

چکیده

The significant amount of training data required for Convolutional Neural Networks has become a bottleneck applications like semantic segmentation. Few-shot segmentation algorithms address this problem, with an aim to achieve good performance in the low-data regime, few annotated images. Recent approaches based on class-prototypes computed from available have achieved immense success task. In work, we propose novel meta-learning framework, Semantic Meta-Learning (SML), which incorporates class level descriptions generated prototypes problem. addition, use well-established technique, ridge regression, not only bring class-level information, but also effectively utilise information multiple images present prototype computation. This simple closed-form solution, and thus can be implemented easily efficiently. Extensive experiments benchmark PASCAL-5i dataset under different experimental settings demonstrate effectiveness proposed framework.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-Shot Learning for Semantic Segmentation

Low-shot learning methods for image classification support learning from sparse data. We extend these techniques to support dense semantic image segmentation. Specifically, we train a network that, given a small set of annotated images, produces parameters for a Fully Convolutional Network (FCN). We use this FCN to perform dense pixel-level prediction on a test image for the new semantic class....

متن کامل

Few-Shot Learning with Meta Metric Learners

Existing few-shot learning approaches are based on either meta-learning or metriclearning, which would suffer if the tasks have varying numbers of classes and/or the tasks diverge significantly. We propose meta metric learning to deal with the limitations of the existing few-shot learning approaches. Our meta metric learning approach consists of two components, task-specific learners that explo...

متن کامل

Meta-SGD: Learning to Learn Quickly for Few Shot Learning

Few-shot learning is challenging for learning algorithms that learn each task in isolation and from scratch. In contrast, meta-learning learns from many related tasks a meta-learner that can learn a new task more accurately and faster with fewer examples, where the choice of meta-learners is crucial. In this paper, we develop Meta-SGD, an SGD-like, easily trainable meta-learner that can initial...

متن کامل

Zero-Shot Learning for Semantic Utterance Classification

We propose a novel zero-shot learning method for semantic utterance classification (SUC). It learns a classifier f : X → Y for problems where none of the semantic categories Y are present in the training set. The framework uncovers the link between categories and utterances through a semantic space. We show that this semantic space can be learned by deep neural networks trained on large amounts...

متن کامل

Preserving Semantic Relations for Zero-Shot Learning

Zero-shot learning has gained popularity due to its potential to scale recognition models without requiring additional training data. This is usually achieved by associating categories with their semantic information like attributes. However, we believe that the potential offered by this paradigm is not yet fully exploited. In this work, we propose to utilize the structure of the space spanned ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition Letters

سال: 2021

ISSN: ['1872-7344', '0167-8655']

DOI: https://doi.org/10.1016/j.patrec.2021.03.036